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C O N T A C T  I N T E R A C T I O N  OF C Y L I N D R I C A L  BODIES 

W I T H  A L L O W A N C E  F O R  T H E  SURFACE R O U G H N E S S  FACTORS 

A. S. Kravchuk  UDC 539.3 

The problem of the elastic contact interaction between a rough disk and a rough plane with a 
round cut-out is solved with allowance for the microgeometry of their suTfaces. This makes it 
possible to clarify the effect of the main parameters of the problem on the stress state" in the 
examined joint. A comparison of results from an analysis of the stress state in the contact 
region for various combinations of the elastic characteristics of interacting smooth bodies and 
results of well-known studies confirms the high effectiveness of the approach proposed. 

The advances in engineering pose new problems in the field of the serviceability of machines and their 
members. At the same time, the development of new computational models and the improvement of ex- 
perimental methods require revision of the methods and assumptions used to determine the stress state of 
members. The solution of contact elasticity problems for bodies with circular boundaries and with charac- 
teristic linear dimensions of the contact region commensurable with the curvature radius of the contacting 
surface is of great significance for engineering practice. This solution is a theoretical basis of strength and 
rigidity calculations for machine components such as plain bearings, hinged joints, some types of gearing, and 
tension joints [1]. 

The equation of the contact problem for an elastic rough body was obtained for the first time by 
Shtaerman [2] assuming that in an elastic body, besides the displacements produced by the action of normal 
pressure and determined by solution of corresponding elastic problems, there are additional' normal displace- 
ments due to purely local deformations depending on the microstructure of contacting surfaces. In a number 
of studies, it is assumed that the additional normal displacements due to deformation of microprojections of 
contacting bodies are proportional to the macrostress to some power. This assumption is based on equating 
averaged displacements and stresses within the base measured length of surface roughness. However, despite 
the well-elaborated apparatus for solving problems of these type taking into account the layer of elevated 
compliance [1, 2], some difficulties of a methodical nature have not been overcome. Thus, with allowance for 
the real microgeometry characteristics, the assumption of a power-law relation between stresses and displace- 
ments of the surface layer is valid for small base lengths, i.e., for a highly pure surface, and hence, with the 
validity of the hypothesis on topographic smoothness at the microlevel [3]. It should also be noted that  this 
approach complicates the equation significantly and does not describe the effect of undulation. The accuracy 
of the coefficients in the integral equation obtained after the transformation O(E) is much lower than the 
accuracy O(E 2, 2E/R) assumed in the formulation of the problem in [1] (z = R - r, where R and r are the 
radii of cylindrical members), which contradicts the initial premises and greatly reduces the possibility of 
analyzing the effect of the parameter s on the distribution of contact stresses. 

Thus, it is necessary to develop a unified approach to studying the contact interaction of cylindrical 
bodies with proper account of the geometry of interacting members, their relative position, surface micro- 
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Fig. 1. Relative position of the contacting bodies. 

geometry, and the possibility of obtaining an approximate solution with a small number of independent 
parameters describing the stress state in the contact  region with sufficient accuracy for practice [1, 3, 4]. 

Following [5, 6], we assume that distortions of the shape of the  interacting members are insignificant 
compared to the difference of their radii. We consider the problem of the interaction of an elastic isotropic 

layer of unit thickness having a round cut-out of radius R with an elastic disk of radius r. We assume that  
E 2 and E / R  are small and a point force P acting along the y axis is applied at the center of the disk (Fig. 1). 

Friction is absent in the contact  region L ( - a 0  <~ 0 ~< a0, where s0 is the  half-angle of contact).  
We introduce the variables xl = R cos ~l, Yl = R sin ~1, x2 ---- r cos ~2, and Y2 = r sin ~2 - ~- 
In the contact region L, we have ~1 = ~2 = ~ with the adopted accuracy (see [1] and Fig. 1). Since the 

displacements are small compared to the geometric dimensions of the bodies, the condition (Xl + ul)  2 + (yl + 
vl) 2 = (x2 + u2) 2 + (Y2 + v2 - 5) 2 is satisfied, where um and vm are components  of the displacement vector 
for the plane with a cylindrical hole (m = 1) and the disk (m = 2) and  5 is the sag of the center of the disk. 
Ignoring small quantit ies of higher orders, we obtain e + ul cos ~ + vl sin r = u2 cos r + (v2 - 5 - z) sin ~. 

* * *  * * *  Let u m =  urn + urn and vm = vm + vm (urn, v m* , urn**, and vrn** are the  displacements of the main material 
and the surface layer, respectively). 

We assume tha t  in the contact region, the elastic radial displacements due to the deformation of the 
microroughness are constant  and proportional to the average contact  stress a to some power k. This approach 
is widely used in studies of plane joints but the accumulated exper imental  material indicates tha t  it can also 
be used for cylindrical members having similar radii [5, 6]. After e lementary  transformations taking into 

account the adopted assumptions, we obtain 

Ou~ Or{ O~u~ 02v~ 
s - v - 2 ~ s i n ( + 2 - ~  c o s ; + - ~  c o s ; + ~  s i n ;  

0 ~  r + 2 0v~ cos r + 02u~ 02v~ 
= -2-~-__ sin 0~ ~ cos ~ + - ~  sin ~, 

where v is the approach of  the interacting surfaces due to the deformat ion of microirregularities in the contact 

region. 
In addition, for the main material, we have [7] 

1 (OvUm ) 1 
a m  + = (Clm r -  mC2rnOr) = 1, e). 

Here R1 = R and R2 = r, Um is Poisson's ratio, Ern is Young's modulus,  6rCm and crr are components  of the 
normal stresses, Glrn = (1 - u2m) and G2m = 1 + Urn for plane deformat ion,  and Glm = G2rn = 1 for plane 
stress. Then, for the contact  arc, the following equality holds: 
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~ ( O ~  cosc + Ov{ ~) e - v + E1  (G i l a (1  - UlG21cr') + \ 0 (  - ~ -  sin 

= ~ ( c ~ a r  - ~,~c;~,~,.) + ', OC cos  ~ + ~ s in  . 

We use the well-known relat ions [8] 

a ; m  + o'~ = 2[~m(w) + ~m(W) ], don -- crr+ 2i~-rr = 2exp(2i~)[ff~'(w) + ~(w)}, 

(i) 

(2) 

where w = z (m = 1) for the p lane  and  w = s (m = 2) for the disk, # ~  is the Lam~ coefficient, i = x / -~ ,  

m,n = 3 - 4urn for p lane  deformat ion  and  ~ = (3 - urn)/(1 + urn) for plane stress,  ~ ( w )  = ~Om(W) and 
' ~ ( w )  = q~m(w), where m = 1 and  2. 

F r o m  (1) and (2) it follows t h a t  

R 0 ( , ~ 1 + 1  . ) 
- v + ~11 ( 2 G i l [ ~ l ( t )  + ~ , ( t ) ]  - (an + ulGm)a~) + R -~ ~ z [ ~ l ( t )  - ~ , ( t ) ]  

r 0 /~e2 + 1 . 
- -  ~_ (2Gi2[~2(h) + ~2(h)]  - (Gi2 + v2G2~)cr.) + r {--7--'--- z[~2 (3) 

1/h = R/O-t) .  

T a k i n g  into account  the loading scheme (see Fig. 1), the absence  of friction in the  contac t  region, and 
the resul ts  of  [1], we have 

ael i P  1 f a.(T)_dT, 
~ i (Z )  ---- 2Tr(1 + ~el) z 27ri T - - z  

L 

- i P  1 
�9 2(s) - 27r(1 + w2) s 

L L 

(4) 

Thus ,  f rom (3) and  (4) we ob ta in  the following integrodifferent ia l  equat ion  for the  normal  radial stresses 
in which all coefficients are de te rmined  with  the specif ied accuracy:  

--.z 7 = T  = ~1~ . ( t )  - --~ ~2 7 - ~ - ~3 -~ - ~4b - ~5(~ - v) .  (5) 
L 

Here 

")'1 ---- 

"[5 

(G12 - u2G22)EIRr - (Gll - u lG m )E2 R  2 (1 + u2)E1Rr + eel(1 + ul)E2R 2 
2(R2E2G11 + r2E1G12) , "y2 = 4(R2E2G1 t + r2E1G12) , 

G12eRE1 G11E2 
73 = 2 r ( t  + ae2)(R2E2Gll + r2E1G12) ' 74 = R2E2G11 + r2E1Gi 2, 

_--f_ = c(--_P L~ ~ 
E1E2R R2 err d% v 

2(R2E2Gi i + r2EiGi2) ' b =  27ri v \2c~0 R ]  ' 
L 

t ---- R exp( i{) ,  
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Fig. 2. Compressing force (a) and maximum contact pressure (b) versus half-angle of contact: 
curves 1 and 2 refer to smooth and rough surfaces, respectively (R' = 3.12 #m and r' = 8.0 lzm). 

and C and k are constants that  depend on the roughness parameters R' (height of smoothing) and r ~ (calcu- 
lated curvature radius of the protrusions) [6, 9, 10]. 

The approximate solution of the integral equation (5) is written as 

v [2 - +  ]  /coso- cos 0 cos (0/2/ 
a~(8) = -P--R-  72 rr a0 - cosc~0sin~0 

+2 P R(c~0 - cosa0 since0)] § 75(e - v) in x/1 + cos~) -~/1 §176 - c o s C ~ 0 c o s  c~0 ' 

P 

The quantities P and b are evaluated from the equations 
0~0 0~0 

P = - 2 R  at(0) cos 0 dO, b = - a~(O) dO. 
~r 

0 o 

In solving the contact problem for smooth surfaces (plane deformation), it is established that when E/> 
0 for various combinations of the elastic constants of the interacting bodies corresponding to the characteristics 
of isotropic materials used in engineering, the error of the approximate solution of Eq. (5) in the form (6) 
does not surpass 4% of the maximum contact pressure Pm~x [Pmax = -a~(0)],  which is sufficient accuracy 
in solving practical problems. In addition, the dependences of the dimensionless parameters P/(EE1) and 
pm,xR/(EE1) (e /R  < 0.05) on the half-angle of contact (Fig. 2) agree well with the approximate solution of 
the problem obtained using four collocation points [1]. 

The solutions obtained for smooth bodies can be used as a zero approximation in studies of the effect 
of roughness on the distribution of normal radial stresses. Calculations show tha t  in the case of interaction 
of rough bodies [9], the half-angle of contact increases somewhat compared to the half-angle for smooth 
members, and the highest contact stresses decrease (Fig. 2). 

In design calculations of members, the studies performed make it possible to take into account not 
only the geometry of interacting bodies and their relative position but also the relief parameters specified by 
GOST 2789-73 "Surface roughnesses." 
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